
EarthBound Hacking
101

First Edition

Table of Contents

Introduction
I. CoilSnake

Chapter 1. Getting Started
Chapter 2. Your First Hack
Chapter 3. NPCs
Chapter 4. Playable Characters
Chapter 5. PSI Abilities
Chapter 6. Battle – Actions
Chapter 7. Battle – Enemies
Chapter 8. Battle – Backgrounds
Chapter 9. Items
Chapter 10. Stores
Chapter 11. The User Interface
Chapter 12. Music
Chapter 13. Miscellaneous

II. CCScript
III. Earthbound Music Editor
IV. PSI Animation Editor
V. Earthbound Save State Editor

Introduction

Greetings, and congratulations on your acquisition of this document! By doing so, you have not only
ensured the renewal of hope for all of humanity, you have also saved an average of nine puppies from a
horrible demise! On a related note, you have also taken the first step towards learning how to hack
EarthBound.

This guide will hopefully instruct you in all the basic techniques required to get you up and hacking
one of the greatest games in modern history. Beyond reasonable computer skills and a willingness to
learn, there are no real prerequisites, so let’s jump right in!

How can EarthBound be hacked? It’s on a console!
EarthBound, like any other console game, can have its data extracted and manipulated on a computer

with special tools that are able to grab its ROM (Read-Only Memory) from its cartridge, where all the
game’s programming and art is located. The ROM can then be passed through something called an
emulator, which attempts to recreate an SNES environment so that you can play EarthBound on a
personal computer.

The ownership of a ROM is legally-dubious at best, and distributing a ROM can frequently lead to
legal action from the creators of the game. Since STARMEN.NET would rather avoid a lawsuit if
possible, it does not distribute the EarthBound ROM, so you’re on your own to find one (and in any case,
a quick Google search should be enough to find one within a
minute).

Once you have your ROM, you’ll need to get an emulator.
ZSNES is highly recommended, as it is cross-platform, possesses
a plethora of features, and is easy to use. Just open your ROM
with ZSNES and voilà – you can now play EarthBound on your
computer.

Now that you have the game data on your computer, you can
start modifying the game. To do so, you can either manually
tweak the hexadecimal values (an explanation is beyond the scope
of this manual, but there are many useful resources on the
Internet) contained within the ROM (which is useful if your objective is to discover new features), or you
can use some of the many tools that have been written over the years to automate the process
considerably (particularly useful if you’re less of a technical person and more of an artist-type). This
manual will focus on some of these tools (keep reading...).

Well, okay, so what about Mother? And Mother 3?

A screenshot of ZSNES' menu screen.

http://www.zsnes.com/
http://www.starmen.net/

For varying reasons, less efforts have been invested into hacking the games that preceded and
followed EarthBound, namely Mother/EarthBound 0 and Mother 3. In the case of the former, this is
mostly because it is much less interesting to work with the original Mother engine than with the
EarthBound engine, since the latter offers a greater degree of customization. In the case of Mother 3,
the architecture of its ROM makes it difficult to hack, so few efforts have been expanded toward doing
so.

There are a few tools, however; check them out at STARMEN.NET’s PK Hack section, under “Editing
Tools for Mother 1 and Mother 3”. These tools will not be covered in this manual.

How is this manual organized?
This document has been split into several parts, each dealing with a specific tool used to hack

EarthBound. These are the tools which will be covered, in order:
• CoilSnake : CoilSnake is a replacement for PK Hack (the original hacking software, also known as

JHack), whose propensity towards ROM corruption was a severe limitation for hacking. Whereas PK
Hack edited the ROM directly with custom editors, CoilSnake extracts the required data so that it can
be edited with external programs. It can be used in conjunction with CCScript (see below). CoilSnake
has both a CLI (Command-Line Interface) and a GUI (Graphical User Interface, written in Tkinter); this
manual will cover both for each technique where possible. However, if you’re just starting out, you
might be more comfortable using the GUI.

• CCScript : the ultimate dialogue editor, CCScript is used to edit characters’ and objects’ dialogue
with the player throughout EarthBound. It possesses a simple, human-readable and easy-to-use syntax
for creating complex dialogs, with much more than just text. CoilSnake is able to bind these dialogues to
the exported ROM automatically. While CCScript files can be created using Visual CCScript, this is not
recommended as CoilSnake can handle CCScript compilation itself, when tied to an appropriate
CCScript compiler.

• EbProjEdit : the best map editor beginning with Eb and ending with Edit, use EbProjEdit to
graphically edit EarthBound map files generated with CoilSnake.

• EarthBound Music Editor : not only does this tool allow you to edit music, it also allows you to
play back songs! Recommended for musicians bound to Earth.

• PSI Animation Editor : a really useful tool if you’re looking for a way to animate new PSI effects
in EarthBound.

• EarthBound Save State Editor : a useful tool when debugging to quickly skip ahead, this tool
allows you to jump to another point in the game by modifying your save data.

What do I need to start hacking?
Operating system: CoilSnake and CCScript are cross-platform programs, and will work on Windows,

Max and Linux. EB Hack and EbProjEdit will run on any system with Java installed. The Earthbound

http://starmen.net/pkhack/downloads/utilities/ebsavestate31.exe
http://local-static1.forum-files.fobby.net/forum_attachments/0001/9116/Earthbound%20PSI%20Animation%20Editor.exe
http://local-static3.forum-files.fobby.net/forum_attachments/0013/3388/ebmused201.zip
http://goo.gl/TfLIR
http://forum.starmen.net/forum/Community/PKHack/CCScript-A-new-revolution-in-text-editing-D/page/1/
http://forum.starmen.net/forum/Community/PKHack/CoilSnake-v1-0-Cool-Fish-Type-Edition/page/1/
http://starmen.net/pkhack/downloads/utilities/

Music Editor, PSI Animation Editor and EarthBound Save State Editor are Windows-only programs, but
using the Mono library on Wine, they could potentially be made to run on Linux and Mac.

Text editor: Apart from an appropriate operating system, you’ll need various standard utilities to edit
game files: a text editor to edit .yml files, such as NotePad++ (Windows), TextMate (Mac), or Gedit
(Linux). A word processor (such as Microsoft Word) is unlikely to work.

Image editor: Photoshop is the industry standard for image editing, and with good reason, but
remains an extremely expensive program. If you can’t afford it, there are many other programs available,
such as GraphicsGale (free). Warning: while GIMP is an extremely popular open-source alternative to
Photoshop, there is currently a bug in recent versions when saving indexed PNGs; it is therefore not
recommended to use GIMP.

Dependencies: Individual programs might have third-party dependencies, or might even depend upon
each other to work. Each tool’s documentation will outline what is needed.

One human brain: Preferably not in a jar.

How complete is this manual?
Not completely complete. This First Edition deals only with CoilSnake and skims over some parts,

but later editions will try to cover all the other important tools, while also providing appendices of
reference for control codes, various values, and more!

But that is for another day.

http://www.humanbalance.net/gale/us/index.html

I. CoilSnake

CoilSnake is perhaps the single most important tool in your hacking arsenal, as it allows you to
decompile ROM files to an organized directory which will contain (almost) everything from the game,
including PSI power lists, enemy statistics, artwork and more. Its purpose is to eventually supersede
PK Hack/JHack through the progressive addition of new features.

The main advantage of CoilSnake over PKHack is that it does not directly modify the ROM file: this
means that the chance that the ROM will get corrupted is a lot less significant. It also gives you more
freedom over your hacking, letting you choose your own image editors, text editors, and so on, while
preserving the human-readable YAML format for its text data files.

CoilSnake is written in Python and is therefore cross-platform. It requires Python 2.7, Python’s
YAML extension, and the Python Image Library (PIL). If you wish to use its Graphical User Interface,
you’ll also need to have Python’s Tkinter extension.

Additionally, if you wish to make use of CCScript within your hacking projects (which you probably
should if you intend to write some dialogue), you’ll have to obtain a CCScript compiler binary and
specify its location within CoilSnake’s preferences (see below for more instructions). For instructions on
compiling CCScript for your system, see the appropriate section.

Note for non-Windows users: CoilSnake uses a pre-built binary blob for the NativeComp Python
module; however, this binary will not work on other systems, so you’ll have to compile your own.
Scared? Don’t be! build_NativeComp.py is a user-friendly Python script that will build the module
for you. On *nix systems (like OSX or Linux), simply enter the following commands into the terminal
(tested on Debian Testing):
cd path/to/coilsnake/modules/eb/

python build_NativeComp.py build

cp build/lib.*/NativeComp.so NativeComp.so

Once your CoilSnake installation is ready, you’re ready to get started!

Official Thread: CoilSnake v1.2: Based on a True Story

Download Link (current version: 1.2): CoilSnake_1.2.zip

Source: https://github.com/kiij/CoilSnake

https://github.com/kiij/CoilSnake
http://goo.gl/RAHSW
http://forum.starmen.net/forum/Community/PKHack/CoilSnake-v1-0-Cool-Fish-Type-Edition/page/1
http://en.wikipedia.org/wiki/YAML

Chapter 1.
Getting Started

At a first glance, CoilSnake can seem pretty bare, but this bellies its powerful nature. For example,
while the GUI doesn’t seem to provide that many options, this is by design. Its true strength becomes
apparent once you run the software a first time. Let’s take a look at the GUI first, before moving on to
the command-line options. In the next chapter, we’ll actually make it do something.

1. CoilSnake’s Graphical User Interface
To start up the visual version of CoilSnake, run CoilSnakeGUI.py (either from the terminal or by

double-clicking on it, depending on your system setup).

Even though it’s not much to look at, it gets the job done, and it does it well. And while much of the
interface appears self-explanatory, it never hurts to give more explanations.

The main screen is the center of operations, and each section has a clearly different purpose.
The ROM -> New Project section is used to take an

existing, vanilla ROM of Earthbound (modified/hacked
ROMs will probably not work as well) and to decompile
it to a directory on your hard drive. You specify the

source ROM, the directory where CoilSnake will place its files, and you hit Decompile. The progress of
the operation will appear in the white textbox below.

The section to the right, Project -> New ROM, does
the exact opposite: it takes a modified project directory
(such as one exported using the previous section) and

CoilSnake's GUI. Isn't Tkinter a beauty?

compiles it into a new ROM, which you can then play to enjoy your hacks and modifications. You’ll need
to select a base ROM for this task – one which you have already expanded by using CoilSnake (see later
on). Hit Compile and let CoilSnake do its magic – it shouldn’t take too long.

Finally, the last section, Upgrade Project, is used to
convert a CoilSnake project made with a previous
version of CoilSnake (at the time of this writing, this
would be versions 1.0 and 1.1 of CoilSnake) to the

latest format, while preserving existing data. You need to provide a Base ROM to serve as a reference,
and the Project Directory to be upgraded by CoilSnake.

But wait! What if your project contains CCScript files? How will CoilSnake know how to compile
your files? By not doing it, of course! Instead, it delegates the task to the CCScript compiler binary. To
specify its location, navigate to Preferences → CCScript Compiler Executable, and open the file with
the dialog box.

Similarly, if you’d like being able to test your ROM directly from CoilSnake, you can also set the
emulator program to be used by an analogous method, using Preferences → Emulator Executable.

Additionally, if you like seeing more error messages, you can toggle the setting by navigating to
Preferences → Toggle Error Details (by default, this is set to a lower setting).

An important step in the hacking of an EarthBound ROM is to expand its size to allow for content
additions. This can be achieved through the GUI by using the menu entry Tools → Expand ROM to
32MBit (if you don’t plan on a big hack) or Tools → Expand ROM to 48MBit (if your hack needs the
extra space), and selecting the ROM to expand.

Additionally, in the Tools menu, you can choose to add or remove an SNES cartridge header to your
ROM, although you probably won’t need to do this in the course of your hacking.

This is about it for the GUI – there’s not much more you can do here. So let’s move on to the CLI.

2. CoilSnake’s Command-Line Interface
CoilSnake's command-line functionality is pretty much identical to the GUI’s functionality, albeit with

a few missing features (the ability to expand your ROM is available, but it requires using
tools/EbRomExpander.py instead of CoilSnake.py; it will be covered in a later edition). You must
start it either directly from the console (./CoilSnake.py on *nix operating systems) or by double-
clicking it to open up the terminal/console (note: this might immediately close the console, depending on
your OS and setup; an alternative is to open it with IDLE, the Python IDE). There are three different
operations that can be performed (the syntax of the commands is for *nix systems, but it is usually
analogous on other systems):

• ./CoilSnake.py -c ProjectDirectory BaseROM OutputROM [-ccc CCC]: this
command achieves the same result as the GUI’s Compile option. The three arguments are paths to the
locations of your project directory, base expanded ROM and output ROM, respectively. Remember to
surround these paths with “...” if the paths contain spaces! There is a fourth, optional argument,
which you can use if your project contains CCScript files that need to be compiled; appending it and
providing the path argument will tell CoilSnake where it can find the CCScript compiler binary.

• ./CoilSnake.py -d ROM ProjectDirectory: decompiles the ROM at the specified
location to the specified project directory.

• ./CoilSnake.py -u BaseROM ProjectDirectory: finally, this is the equivalent of the
Upgrade option in the GUI, and takes the path of the base ROM and the folder to output to.

Now that you know how CoilSnake's interfaces work, let’s look at the layout of the project directory.

3. The Project Directory
The typical appearance of a ROM decompiled with EarthBound is a great amount of folders and files,

the latter being usually either in the .yml or .png format.

It may appear a bit overwhelming at first through the sheer amount of configurability available to you,
but each file is logically named and located to make things easier to manage.

We will go into more detail on the subject of each individual file in the later chapters, but let’s take a
general look at them first.

• The Project.snake file: this is what makes this folder more than a collection of pretty images
and gibberish: it provides CoilSnake with information on the location of every resource file there is, as

The standard folder layout (on Linux Mint).

well as some metadata like the ROM type (EarthBound) and the CoilSnake version (1.0 1, 1.1 2,→ →
1.2 3, and so on). You should never have to edit this file manually.→

• The .yml files: these are among the most numerous files, and for good reason. They contain the
actual settings of the game, such as “Don’t Care” name options (when choosing names for your
characters in EarthBound) in the dont_care_names.yml file. YAML possesses a very self-explanatory
syntax, but if you ever encounter something that confuses you, there is a wealth of online
documentation available. You’ll also notice a great number of address code, either as 0x82ab or
$ef8543 (for example): these are actually called pointers to data, indicating EarthBound where to look
for the specified resource.

• The BattleBG directory: contains all the different types of battle backgrounds which should be
stretched, deformed, etc. during battles.

• The BattleSprites directory: a list of enemy sprites used during battles.
• The ccscript directory: a place to put all your CCScript dialogue so that it can be compiled.
• The Fonts directory: the fonts used by EarthBound (including Saturnian, zoom!).
• The Logos directory: the logos displayed at the beginning of the game for the creators of

EarthBound.
• The SpriteGroups directory: the sprites used to animate the characters on the world map

(NPCs, player characters, enemies, etc.).
• The Tilesets directory and map_tiles.map: the files in Tilesets contain the tiles used for

the maps and should not be manually edited. Likewise, map_tiles.map arranges those tiles into the
maps used for the locations in EarthBound.

• The TownMaps directory: the small maps of towns displayed to the player.
• The WindowGraphics directory: the various GUI elements used to display the HUD, with the

different flavors available to the player.
To modify the game, simply modify existing files to your liking. For now, however, there is no way to

add new files (except for CCScript files, which must all be placed in the ccscript directory, where
they will be automatically detected).

Conclusion
Now that you know how CoilSnake works and is organized, you’re (un)officially ready to write your

first hack! Keep reading...

Chapter 2.
Your First Hack

The standard program most programmers write when learning a new language is Hello World, which
aims to output “Hello World!” in some fashion to the user. Sounds exciting, right?

It isn’t. It’s boring.
So let’s do a twist on that that’s a bit more involved, but is hopefully a lot more rewarding.

1. Planning the Hack
A hack without a plan is like a train without a steering wheel: it works just fine. However, you might

want some levers and other controls on that train, because unless derailing trains is your weekend
hobby, you’re not likely to enjoy the trip in the long-run, once you realize you don’t know where you’re
going. So let’s think a bit before making this hack.

Additional note: There a few good tips here on an old tutorial for JHack which might be of interest to
you once you start fleshing out your own hacks; check it out!

EarthBound is a game, so it would make sense if you saw “Hello World” said by a NPC instead of just
printed on-screen. So we’ll need to make a character say this at some point in the game. Oh, but that’s
pretty easy – you just need to substitute some dialog at one point. And it’s boring besides. Maybe the
character could be in a place where he’s not supposed to be? Say (spoiler alert!) Robot Ness in Ness’
house at the beginning of the game? Yeah, that sounds a bit more interesting (or not; everyone’s entitled
to his opinion). Let’s work with that.

So, what would we need to do? Well, the sprite already exists, so there’s no need to create a new
one. The map would have to be edited, though, so that Robot Ness can be placed somewhere in Ness’
bedroom. But wait, since we can’t create new NPCs (yup; that’s a limitation currently), we’ll have to use
an existing NPC and modify it for our purposes. Maybe a more-or-less useless one could be used, like a
present box (yes, a NPC CAN be an object!). And some dialogue should be tied to him; CCScript should
get the job done. Alright, so we need:

1) To replace a mostly useless NPC (such as a present) with our custom one.
2) To add Robot Ness to Ness’ bedroom using EbProjEdit.
3) To tie some dialogue to him with CCScript.
Doesn’t sound that hard, right? So let’s hop to it!

2. Replacing a NPC
All NPCs are configured in npc_config_table.yml, and are identified by their ID. Let’s take at

http://starmen.net/pkhack/tutorials/prototype/section1.php

look at 744:
744:

 Direction: down

 Event Flag: 0x274

 Movement: 708

 Show Sprite: when event flag set

 Sprite: 195

 Text Pointer 1: $c7db3f

 Text Pointer 2: $0

 Type: object

We need to change a few things about this (don’t worry about the exact details, they will be covered
later):
744:

 Direction: down

 Event Flag: 0x0

 Movement: 605

 Show Sprite: always

 Sprite: 5

 Text Pointer 1: robot.hello_world

 Text Pointer 2: $0

 Type: person

A few explanations are in order: since this sprite will always appear, we don’t need to set an event
flag to it (thus, 0x0 as an event flag and Show Sprite: always). Setting 605 as Movement will
make the robot static until interacted with. Sprite: 5 sets the sprite group #5 (Robot Ness) as the
sprite animation group for Robot Ness. Type: person ensures that the correct interaction option is
“Talk to”. Finally, Text Pointer 1: robot.hello_world specifies that the text is located at the
hello_world location in memory, which is a label we will define later on (in the robot.ccs file, thus
the robot prefix) when writing CCScript.

Now that we have our NPC ready, let’s place him in the appropriate location.

3. Editing the Map
You’ll need EbProjEdit for this step, although for the purpose of this first hack,

you won’t need to be fully knowledgeable with it yet (read the tutorial on it later
on if you lack confidence on your ability to follow step-by-step directions). Just
download the .jar Java program specified and run it.

When you first open it, you should see a tiny, unassuming initial screen, pictured
to the right. You can’t really do anything yet with it, so click on the folder icon to
open your Project.snake file. It will take a while to load all of its data, but it EbProjEdit

will get there eventually; you’ll know when it’s ready when all three buttons light up. We don’t want to
edit existing tilesets or handle door mechanisms, so open up the Map Editor.

A new screen will pop up with a default map
loaded. Since we want to edit Ness’ bedroom
at the beginning of the game, scroll over the
map until you find it – it’s somewhere around
the top-right corner.

So now that that’s done, you want to bring
up the Sprite Edit mode – do so by hitting F2.

Then, right-click someplace within Ness’
bedroom, and select “New NPC”. By default,
this is Ness, so let’s select a different sprite by
right-clicking on it and choosing “Switch NPC
(0)”. Type 744 into the box that pops up, 744
being the ID of the NPC we have replaced.

Ness’ bedroom should now look something like this:

4. Scripting Some Dialogue
For this step, you’ll need a working CCScript compiler; obtaining one is described in the CCScript

section. Then, you’ll need to specify its location in CoilSnake's preferences before compiling. However,
you don’t need to know anything else about CCScript for this step.

CCScript files must all be placed in the ccscript of your CoilSnake project. Go ahead and create an
empty robot.ccs file with a text editor of your choice, and write this text into it:
hello_world:

 "@???: Hello World!" end

This will effectively make our NPC (here called “???”) say “Hello World!” to Ness, then stop the
conversation. Neat, isn’t it?

The Map Editor with Ness' bedroom visible.

Ness' Bedroom - now with 100% more robot!

5. Compiling and Running
Looks like we’re good to go. Load up CoilSnake, give him the location of your Project Directory and a

path to a ROM file, either one that you don’t mind getting overwritten or one to be created, and hit
Compile. Then, open up your favorite emulator, and try out your work!

And there you have it. Your first hack. Isn’t he cute?
Of course, this is just the beginning, and there’s a lot to learn yet...

Conclusion
You got to build your first hack for EarthBound and you got familiar with some of the tools you’ll be

using, as well as getting a glimpse at some of the techniques you’ll be using time and again. From now
on, you can read this manual in almost any order, since most chapters aren’t dependent on others. You’ll
start learning all sorts of techniques one by one, until you’re ready to make the Next Big Hack.

 Is your heart beating incredibly fast?

Clash of the titans.

Chapter 3.
NPCs

Non-Player Characters are a staple of many (if not all) RPGs, and EarthBound is obviously no
exception. Whether they are as simple as a present box or as complex as Pokey Minch, almost all NPCs
are handled in the same fashion by CoilSnake. You got a brief glimpse at how they work in the previous
chapter, so let’s go into more detail in here.

Before we begin, you have to remember (and this applies in almost every case) that there is no way
to add new objects directly: each time you want to add a new object, be it a phone, a character, or
anything else, you have to edit an existing entry and overwrite it with your new data. So before you
start creating new things, make sure your hack can do away with at least one object which the player
won’t need to enjoy your hack.

List of files used:
• SpriteGroups/

• npc_config_table.yml

• sprite_groups.yml

1. NPC Sprites
All the NPC sprites CoilSnake can extract from EarthBound are located within the SpriteGroups

directory.
Each sprite group is composed of 16 “slots” for sprites, some of them being unused (since not all

NPCs use all of their possible animations). Each individual sprite represents a possible position for the
NPC, such as sideways, forward-facing, and so on. Sprite groups are identified by their filename, when
they are used in other files produced by CoilSnake; for example, 079.png would be identified by 79.

The sprite groups images can be modified using one of the programs suggested in the introduction of
this manual.

Sprite groups also need to be configured so that the game engine knows how to animate characters
correctly. Their properties are all defined in sprite_groups.yml, using a rather self-explanatory
format (as you will soon find out, a lot of CoilSnake's project files are easy to understand):
1:

 Collision Settings: [8, 8, 8, 8]

 Length: 16

 Size: 16x24

 Swim Flags: [false, false, false, false, false, false, false, false,

false, false, false, false, false, false, false, false]

This is the definition for the group sprite 1 (Ness), as is indicated by the 1: at the top. Let’s take a

look at each individual property.
Collision Settings defines how EarthBound should handle collisions with this sprite group.

Collisions are counted starting from the bottom center of the sprite. The first and third numbers define
the width of the sprite on each side (so 8 and 8 means that the sprite is 16 pixels wide). Likewise, the
second and fourth numbers indicate the height of the sprite (when it comes to collisions that is).
Length sets the number of available sprites within that sprite group (16 for 16 sprites... you get the

idea).
Size specifies the pixel size of an individual sprite.
Swim Flags sets whether or not a sprite should be affected when entering a swim region (by

partially submerging the sprite), by specifying a boolean (true/false) for each sprite, in left-to-right
order.

However, configuration of sprite groups is obviously insufficient to place new NPCs, so additional
steps are required.

2. NPC Configuration
The configuration associated with NPCs can be found in the npc_config_table.yml file. Each set

defines a specific NPC (such as a Tenda bystander or an aggressive Shark), with appropriate behavior
for each. Let’s take a look at a definition for one of the non-aggressive bag-wielding ladies, of ID 82:
82:

 Direction: right

 Event Flag: 0x0

 Movement: 12

 Show Sprite: always

 Sprite: 57

 Text Pointer 1: $c72822

 Text Pointer 2: $0

 Type: person

Let’s once more look at these properties one by one.
Direction indicates the initial direction the NPC should be facing (and thus which sprite to use

initially). This can be right, left, down and up. This is mostly useful if your NPC will be static, as
other types of movements (see below) will make it change its direction as time goes. Item boxes should
always start with the down direction, to indicate their closed status.
Event Flag identifies the event to be used to trigger the appearance of this NPC, if necessary

(example: 0x1a6); if an event flag is not needed (for example, if the sprite must always be displayed),
this should be the null flag: 0x0. If the NPC is an item type, this flag indicates whether or not the item
has been taken from the NPC.
Movement identifies the type of movement to be applied to the NPC; there are hundreds of options

to choose from. In this case, 57 makes the lady walk very quickly to the bottom left, passing through

anything in her way, once the player gets close enough.
Show Sprite sets the condition for the NPC’s visibility; in this case, since there is no Event Flag,

the sprite should always be shown. Other options, to be used when an event flag is specified, are
when event flag set and when event flag unset. For item NPCs, this should always be set
to always.
Sprite specifies the sprite group to be used (as explained in the previous section).
Text Pointer 1 takes a pointer to some dialogue to be displayed when the user interacts (by

examining it or talking) with the NPC. This can either be hex code, or it could be a CCScript label.
Text Pointer 2 takes a pointer to some dialogue to be displayed when an item is used on the

NPC. It if is an item, this should point to the item to be obtained; $100 will make it an empty box, any
setting higher than that provides money to the player (for example, $10A gives the player 10$).
Type specifies whether the NPC is a person, an object (such as an ATM machine) or item (such

as a present box).

Notice: while it may seem like a NPC definition lends itself to re-usability, you should never have
several instances of a NPC on your map, as this might cause instability.

Conclusion
Once your NPCs have been set and configured, you can use them from EbProjEdit to place them in

the appropriate location; you can also assign them some dialogue using CCScript (see the CCScript
tutorial).

Note however that NPCs do not include enemy characters (these are handled differently, as we will
see in the following chapters), so make sure you don’t assign them movements which will provoke an
attack, as a general rule (there might be exceptions, of course, depending on your hack).

Chapter 4.
Playable Characters

What is an RPG without a character to control?
Probably either a very terrible or a very innovative game. But we digress.
Playable characters are handled differently from NPCs, and have different, more fleshed-out

properties assigned to them. Customizing them can produce highly interesting results. However, like
NPCs, their sprite groups are located in SpriteGroups.

List of files used:
• dont_care_names.yml

• exp_table.yml

• initial_stats.yml

• naming_skip.yml

• playable_char_gfx_table.yml

• stats_growth_vars.yml

1. Names
This is a minor feature, but it might interest you if you are doing a complete overhaul of EarthBound,

for example: you can change the default names proposed to you (by the “Don’t Care” option) in the
dont_care_names.yml file, where 0 is Ness, 1 is Paula, 2 is Jeff, and so on. A total of seven
suggested names can be specified in total.

You can enforce names upon the user, if you so choose, through the use of the naming_skip.yml
file. Setting Enable Skip to true skips directly to the game once a new game is started, using the
names specified below; optionally, you can set Enable Summary to true if you want to show the
player the names that are going to be set (if the user clicks “Nope” on the summary screen, he’ll just be
taken back to the summary screen once more).

2. Leveling Up
There are four distinct files which control the way characters level up.
exp_table.yml sets the required amounts of experience required for each character to attain new

levels – setting them all to 1, 2, 3, etc., for example, will make your characters level up quite quickly!
stats_growth_vars.yml sets the growth rates for each character when a new level is gained;

these are used by the mathematical equations the engine uses to compute the new levels gained in each
stat, as outlined in this guide.
initial_stats.yml specifies the default state each character is in when he first joins the party.

Each label is clearly-named (Experience Points, Items Possessed, Level, Money), with a fifth

http://www.gamefaqs.com/snes/588301-earthbound/faqs/54159

property of unknown purpose (appropriately enough, labeled Unknown). The numbers specified in
Items Posessed are defined in item_configuration_table.yml.

Finally, playable_char_gfx_table.yml is in various ways analogous in purpose to
npc_config_table.yml in that it ties the characters with their sprites. Dead Sprite Group
specifies the sprite group to use when one of the characters dies, and so on with all the other
properties (once again, there is an Unknown property).

Conclusion
With the ability to completely customize the main playable characters, you can potentially completely

remake the game, each character coming from a different place, having a different personality and even a
different appearance! It’s all up to you.

Chapter 5.
PSI Abilities

What would our heroes do without PSI abilities? Ness, Paula, Jeff, Poo... each has his own distinct
set of PSI powers. And wouldn’t you know it, CoilSnake lets you customize them... to some extent. For
one thing, there is, as of this writing, no support for PSI animations (although such a feature is planned).

List of files used:
• psi_ability_table.yml

• psi_anim_palettes.yml

• psi_name_table.yml

• psi_teleport_dest_table.yml

1. Configuration
All PSI abilities are declared in psi_ability_table.yml, using the same standard format; let’s

look at the declaration for “Healing ”, ID γ 29:
29:

 Effect: 38

 Level learned by Ness: 53

 Level learned by Paula: 0

 Level learned by Poo: 36

 PSI Menu position (X): 13

 PSI Menu position (Y): 1

 PSI Name: 8

 Strength: gamma

 Text Address: $ef5239

 Type: 2

 Usability Outside of Battle: usable

Effect specifies the action the PSI power should have. To modify the nature of this action, edit the
associated entry in battle_action_table.yml (which we will cover in a later chapter).
Level learned by … indicates the lowest level at which this power is attained.
PSI Menu position (Y) is the row on which the ability’s name is written (going from 0 to 2),

while PSI Menu position (X) is the horizontal location of the symbol for that level of power (, ,α β
, Ω, Σ).γ

PSI Name takes the ID of one of the names defined in psi_name_table.yml, such as ID 7 for
“Lifeup “ (BUG: there is currently a discrepancy between the ID specified in psi_name_table.yml,
say 7, and the ID in psi_ability_table.yml, which would be 6; remember to add one to the ID

when editing a PSI ability).
Strength indicates the level of the power (alpha, beta, gamma, omega, sigma, or none (which you

should never use)).
Text Address is either a pointer or a CCScript label to some text used to describe the PSI ability.
Type can be either 1 (Offense), 2 (Recover), 4 (Assist) or 8 (other), which is used to classify powers

in the ability menus.
Usability Outside of Battle specifies whether or not the power can be used both in battle

and out of battle (usable), usable only in battle (unusable), or a special power such as Teleport
(other).

Notice: never edit the first or last entries in psi_ability_table.yml.

2. Teleportation Abilities
In the case of teleportation powers, additional configuration is required to specify the possible

destinations; this is handled through psi_teleport_dest_table.yml. The syntax is simple as
usual; let’s look at the entry for Twoson for example:
2:

 Event Flag: 0xd2

 Name: Twoson

 X: 176

 Y: 820

Name is the displayed label for the location in the ability menu.
X and Y are the coordinates on the map in the 8x8 format; that is, they specify a 8x8 pixel-sized tile

somewhere on the world map (as can be seen in the Map Editor under Options Show Coordinates → →
Warp X, Y).
Event Flag specifies the flag required to be set in order for this destination to be displayed in the

menu.

3. Animation
CoilSnake does not currently support PSI animation, despite the presence of the

psi_anim_palettes.yml file.

Conclusion
You can now configure PSI abilities for each character, but how can you actually set the action it will

have on your party or its enemies? Read the next chapter for information on... battle actions!

Chapter 6.
Battle – Actions

Like most RPGs, battles are an integral part of EarthBound, and what better way to fight than with
yo-yos, baseball bats, and PSI Rockin? Of course, the properties of these actions have to be defined
somewhere, and that’s what we’ll look at in this chapter.

List of files used:
• battle_action_table.yml

1. Configuring Battle Actions
The battle_action_table.yml file describes every single possible action that can be taken

during a battle by either side, be it using a PSI ability, an item, or any of the miscellaneous abilities
available. Let’s take a look at the description for PSI Rockin:
12:

 Action type: psi

 Code Address: $c29568

 Direction: enemy

 PP Cost: 40

 Target: all

 Text Address: $ef8543

Action type defines whether it is a psi ability, an item’s action, a physical attack (which can be a
physical (affected by shields and defending) attack or a physical (unaffected by
shields and defending) attack), an other action (such as Paula’s Pray), or nothing (which you
should never use, but exists nonetheless).
Code Address indicates the location of the assembly code to be executed when this action is

triggered, whether through a pointer or a CCScript label (read the next section).
Direction indicates whether the action should happen to the enemy or to the party; the actual

group referenced by this varies depending on who is using the action, whether it is one of the player
characters or an enemy.
PP Cost is the amount of PSI Power which will be subtracted from the ability-user’s statistics.
Target can either be all (to indicate all enemies or all party members), one (to indicate a specific

character), row (to indicate a row of enemies), random (to randomly select an enemy) or none, for
miscellaneous battle actions.
Text Address takes either a pointer or a CCScript label to the text to use as the action’s text once

it has been used.

2. Modifying Actions’ Effects
Now while editing PSI Power costs and targets can sound like the most exciting past-time since

eating sliced bread was invented, it is a lot more rewarding to actually create completely new actions
that change the purpose of PSI Abilities – whether this is to heal more, to make enemies instantly die, or
whatever other crazy effect your brain can come up with!

Lamentably, while CoilSnake makes a lot of things easy, it still requires the use of ASM (assembly
code) to modify the effects of battle actions; SNES programming is beyond the scope of this manual,
but if you feel daring enough to learn this dark and ancient voodoo, you might be interested to know
that you can write this code from within CCScript (see the CCScript tutorial for information on this),
then reference it from within battle_action_table.yml.

Conclusion
With the power to change battle actions, you can find new and innovative ways to let your characters

annihilate Giygas’ minions (or even Giygas himself, with the mighty Smelly Sock of Doom!). The next
step is to define these battle enemies...

Chapter 7.
Battle – Enemies

EarthBound wouldn’t be the same if it was deprived of its all of its unique enemies; fortunately,
CoilSnake gives you a great degree of control over each and every one of them. From crows to Giygas,
you can modify them to your heart’s content... as long as Giygas is... H... A... P... P... Y...

List of files used:
• BattleSprites/

• enemy_configuration_table.yml

• enemy_groups.yml

• map_enemy_groups.yml

I. Battle Sprites
Anyone playing EarthBound must have noticed that the enemies you see in battle sometimes look

nothing like what they look like on the world map. That’s because they’re drawn using completely
different sprites, which can be found in the BattleSprites/ directory, where they are classified by
the number which identifies them. You can edit these sprites using one of the programs suggested in the
introduction of this manual.

II. Enemy Statistics
It stands to reason that enemies should have some of the most detailed property blocks of any

object in EarthBound, and CoilSnake being very reasonable, there is much to configure with enemies in
enemy_configuration_table.yml. Each number in the file references a sprite number in the
BattleSprites/ directory. Each block is a whopping 47 lines long – that’s a lot of properties, so let’s
look them over as always; as an example, we’ll use the Armored Frog, ID 3:
3:

 '"The" Flag': 1

 Action 1: 4

 Action 1 Argument: 0

 Action 2: 4

 Action 2 Argument: 0

 Action 3: 4

 Action 3 Argument: 0

 Action 4: 95

 Action 4 Argument: 0

 Action Order: 0

 Boss Flag: 0

 Death Sound: normal

 Death Text Pointer: $ef6d96

 Defense: 108

 Encounter Text Pointer: $ef78b8

 Experience points: 1566

 Final Action: 0

 Final Action Argument: 0

 Fire vulnerability: 100%

 Flash vulnerability: 70%

 Freeze vulnerability: 100%

 Gender: neutral

 Guts: 5

 HP: 202

 Hypnosis/Brainshock vulnerability: 50%

 Initial Status: normal

 Item Dropped: 7

 Item Rarity: 4

 Level: 22

 Luck: 8

 Max Call: 0

 Mirror Success Rate: 50

 Miss Rate: 1

 Money: 77

 Movement pattern: 21

 Music: 98

 Name: Armored Frog

 Offense: 37

 Overworld Sprite: 280

 PP: 0

 Paralysis vulnerability: 50%

 Row: 1

 Run Flag: 7

 Speed: 7

 Type: normal

 Unknown: 2

Ye gods above! Let’s examine that methodically.
'"The" Flag' sets whether the game should display a “the” before the enemy’s name (1) or not

(0) when appropriate.
Action 1, 2, 3, 4 indicate the action in battle_action_table.yml to execute; note that when an

enemy is executing this action, the party in the battle action entries means the enemy group, whereas
enemy indicates the player characters. The associated Argument specifies an option to be passed to
the action, which has a different meaning depending on the action (it could be an item number, or an
enemy number if the enemy is calling for help). Optionally, Final Action can indicate an action to be
executed by the enemy once it has been defeated, Final Action Argument being its argument.
Action Order provides the order used to run through each action:
• 0: random order,
• 1: random order where action 1 is favored with a 50% chance, then action 2 with a 25% chance,

then actions 3 and 4, each with a 12.5% chance,
• 2: cycles through each action in order,
• 3: staggered order, which gives a 50% chance of choosing either action 1 or 2 the first turn, then

a 50% chance of choosing either action 3 or 4 the next turn, and then it repeats.
Boss Flag can be set either to 0 to indicate a normal enemy or 1 to indicate a boss (which means

you won’t be able to run away from it).
Death Sound can either be normal for normal enemies or boss for bosses (which will make all

other enemies disappear upon defeat); Boss Flag does not need to be set for this, however.
Death Text Pointer and Encounter Text Pointer respectively indicate the location of the

text to be displayed once the enemy has been defeated and once he has been encountered.
Defense, Guts, HP, Level, Luck, Offense, PP and Speed represent the enemy’s statistic levels,

much like the player’s levels. Level itself is used to determine whether the enemy should run away on
sight or not.
Experience points specifies the amount of experience which should be split between party

members.
Fire/Flash/Freeze/Hypnosis/Brainshock/Paralysis vulnerability describe how the

enemy should be affected by specified attack or effect: if it is an attack, the percentage represents the
damage that should be dealt to the enemy instead of the one it would normally receive; if it is a status
effect, it is the chance that the effect will succeed.
Gender is used to tell EarthBound how the text should reference the enemy (as a male, female or

neutral being).
Initial Status is the status the enemy should initially be affected with: normal, asleep,

cannot concentrate, feeling strange, psi shield alpha, psi shield beta, shield
alpha, or shield beta, each state being rather self-descriptive.
Item Dropped points to the item from item_configuration_table.yml, if any, using its ID. If an item is

provided, its rarity must be specified with Item Rarity, which can take any value between 0 and 7.
The actual chance is calculated with the following formula, with i being the specified value: 2i/128.
Max Call references the maximal number of enemies that can be called by the current enemy.
Mirror Success Rate represents the chance that Poo’s Mirror ability will succeed using a

percentage (despite the absence of a % sign).
Miss Rate is the chance that the enemy will miss its attack upon the player character, with 0 being

“always hit” and 16 being “always miss”.
Money is the amount of money the enemy will drop upon being defeated.
Movement pattern specifies the type of movement to use on the world map.
Music is the musical piece which should play during the battle, assuming this enemy is the one

encountered on the world map.
Name is, unsurprisingly, the name of the enemy.
Overworld Sprite indicates the sprite from SpriteGroups/ to use on the world map, using its

ID.
PP is the amount of PSI power this enemy has when the battle begins.
Row indicates the row the enemy should appear in when the battle begins.
Run Flag specifies whether the player should be able to run from the enemy (7) or not (6).
Type describes the kind of enemy the player characters are faced with: is it a normal enemy? Is it

made of metal? Is it an insect?
And finally, there is an additional Unknown property for each enemy. Will you be the first to discover

what it does?

III. Enemy Groups
The groups of enemies encountered in battle are described in enemy_groups.yml, and allow you to

control what types of enemies should be available in one group initially, what backgrounds should be
displayed (see below for configuring these), and more. For example, let’s take the group that makes up
the Titanic Ant boss:
450:

 Background 1: 170

 Background 2: 169

 Enemies:

 0: {Amount: 1, Enemy: 37}

 1: {Amount: 2, Enemy: 209}

 Fear event flag: 0

 Fear mode: run away if flag is unset

 Letterbox Size: 0

Background 1/2 specify two possible animated background to layer when the battle begins, as
defined in bg_data_table.yml. If only one is specified, it should have a color depth of 4; if two are
specified, they should have color depths of 2.
Enemies is a list of enemies to add to the enemy group, with the following format: 0: {Amount:

number of enemies, Enemy: ID of enemy} , where the ID references the IDs of
enemy_configuration_table.yml.

Fear event flag specifies the flag which will determine the enemy group’s fleeing behavior, as
set with the next property.
Fear mode describes the way the enemy group will behave according to the specified flag; it can

either be run away if flag is unset or run away if flag is set.
Letterbox Size indicates the size of the black bars at the top and bottom of the screen when

entering battle mode; it can go from 0 to 3.

However, defining the enemy groups is insufficient for them to be used; you also need to specify how
they should be handled on the map in map_enemy_groups.yml; you can later use these definitions in
EbProjEdit. Each map group is divided into two sub-groups, the first to be used before a flag is set, the
second used after the flag is set; each sub-group randomly selects an enemy group to present to the
player. For example, here is the definition for one of the groups found early on in Onett, initially made
up of Spiteful Crows, later on made up of Starmen and Evil Eyes:
1:

 Event Flag: 0x84

 Sub-Group 1:

 0: {Enemy Group: 1, Probability: 2}

 1: {Enemy Group: 2, Probability: 3}

 2: {Enemy Group: 3, Probability: 3}

 Sub-Group 1 Rate: 5

 Sub-Group 2:

 0: {Enemy Group: 4, Probability: 2}

 1: {Enemy Group: 5, Probability: 2}

 2: {Enemy Group: 6, Probability: 2}

 3: {Enemy Group: 7, Probability: 2}

 Sub-Group 2 Rate: 8

This syntax should look pretty familiar to you by now.
Event Flag is the flag which, when set, specifies that Sub-Group 2 should be used; when unset,

Sub-Group 1 will be presented to the user.
Sub-Group 1 and Sub-Group 2 list the enemy groups which could be selected from randomly

(using its Probability), specified by their ID from enemy_groups.yml. The probablities must add
up to 8.
Sub-Group 1/2 Rate specifies the chance, expressed as a percentage without the percentage

sign, that the group will spawn.

Conclusion
That was quite a bit of information, but at least you now know that your enemies are fully

configurable. So, will you come up with the next Giygas?

Chapter 8.
Battle – Backgrounds

One of EarthBound’s most noticeable features is that, unlike other RPGs which display animated
enemies on static backgrounds, EarthBound displays a variety of shifting and twisting backgrounds
behind the enemy sprites. CoilSnake allows you to customize your battles’ backgrounds to your liking in
a surprisingly easy manner, without even requiring manual animation.

List of files used:
• BattleBGs/

• bg_data_table.yml

• bg_distortion_table.yml

• bg_scrolling_table.yml

I. Background Images
The images are all stored in the BattleBGs/ directory, where their filename serves as an ID to

identify them for CoilSnake. Each image is used as a base for the battle background, and depending on
the battle, it can go from being hardly modified to being changed almost beyond recognition, using the
settings which we will now study.

II. Configuring Backgrounds
Each entry in bg_data_table.yml describes the effects which should be applied to the image of

the same ID in BattleBGs/. There are essentially three types of modifications which can be applied:
• Distortion: will bend and stretch the background image; EarthBound will cycle through each

distortion specified.
• Color: the depth of color and the palette can both be customized.
• Scrolling Movement: will scroll the image in both vertical and horizontal directions, as specified;

EarthBound will cycle through each scrolling movement specified.
Every property is self-descriptive in bg_data_table.yml, bg_distortion_table.yml and

bg_scrolling_table.yml (assuming you understand how background animations are generated). A
later edition might cover these in more detail, but for now know that the IDs specified in the Distortion
fields reference the entries in bg_distortion_table.yml and that the IDs in the Scrolling
Movement fields reference the entries in bg_scrolling_table.yml.

Conclusion
This chapter does not dwell in specifics for now; however, assuming you have a general grasp of how

battle animations are generated, this should be enough to get you started.

Chapter 9.
Items

In our modern, materialistic and consumerist societies, where would we be without our precious
items? EagleLand seems to have adopted a similar consumerist philosophy, which is why there is such a
variety of items available, in and out of battle. And, wouldn’t you know it, CoilSnake allows you to
customize them too.

List of files used:
• condiment_table.yml

• consolation_item_table.yml

• item_configuration_table.yml

• timed_delivery_table.yml

• timed_item_transformation_table.yml

I. Configuring Items
The standard properties for items are all set in item_configuration_table.yml. Let’s look at

the entry for the Super plush bear.
3:

 Argument:

 - 17

 - 1

 - 1

 - 0

 Cost: 1198

 Effect: 1

 Help Text Pointer: $c53761

 Misc Flags: 15

 Name: Super plush bear

 Type: 4

Again, a great deal of this should seem familiar.
Argument is a list of options the meaning of which varies depending on the effect of the item.
Cost is the monetary cost of this item in stores.
Effect is the ID of the action (from battle_action_table.yml) that this item should take.
Help Text Pointer accepts either a pointer or a CCScript label for the text to be displayed as a

description for the item.
Misc Flags is for other flags which have varying purposes.
Name is the display name of this item.

Type indicates what kind of item it is:
• 0: a special type used for the Franklin badge,
• 4: teddy bears,
• 8: broken objects which Jeff can fix,
• 16: melee weapons,
• 17: ranged weapons (guns, yo-yos, beams...),
• 20: items that can be equipped on the body,
• 24: items that can be equipped on the arms,
• 28: items that can be equipped in the “Other” section,
• 32: food items,
• 36: beverages and capsules,
• 40: condiments,
• 44: the Large pizza,
• 48: items with special properties,
• 52: one-use items,
• 53: items which boost/lower statistics in battle,
• 56: miscellaneous items which don’t fit elsewhere,
• 58: are for items which will only work if a sector property is set,
• 59: game items that aren’t directly used.
Let’s look at some of those items in more detail.

II. Condiments
Condiments get a special treatment, since they allow for “upgrading” of food items; the food items

which can get upgraded are defined in condiment_table.yml. Each block corresponds to one item in
item_configuration_table.yml; let’s look at the one applied to Luxury jerky:
40:

 bad recover: 2

 condiment 1: 126

 condiment 2: 118

 effect: restore hp

 food: 245

 good recover: 100

 run time: 0

It might not be immediately obvious what all of these do, so let’s take a look at them.
food is the ID of the food item defined in item_configuration_table.yml.
condiment 1 and condiment 2 indicate the two condiments’ IDs from

item_configuration_table.yml which can be applied to this item.

effect is the type of effect the condiment will have on the food item; this can either be restore
hp, restore pp, restore hp/pp, increase random stat, increase iq, increase guts,
increase speed, increase vitality, increase luck or no visible effect.
good recover is the statistical gain any character but Poo will receive.
bad recover is the statistical gain Poo will receive.
run time is duration for which the item will have an effect on the player (for Skip Sandwiches for

example).

III. Special Items
There are two other files used in conjunction with items. The first is

timed_item_transformation_table.yml, which is used for items like chicks, which eventually
grow into chickens.
0:

 Delay: 50

 Item ID: 92

 New Item: 168

 Sound Effect: 0

 Sound Frequency: 0

Delay is the time it takes for the item to transform into the next item.
Item ID is the ID of the current item as defined in item_configuration_table.yml.
New Item is the ID of the item to transform into.
Sound Effect is the sound effect if any to play when this item is acquired. It shall repeated with

the frequency set by Sound Frequency.

Additionally, the Li’l UFO and the Cute Li’l UFO have a special property whereby they might drop a
random “consolation item”. The consolation_item_table.yml file lists all the possible items they
can drop. The file is completely self-explanatory: Enemy ID points to the appropriate UFO in
enemy_configuration_table.yml, and the Item IDs are the ones defined in
item_configuration_table.yml.

IV. Timed Deliveries
Escargo Express and Mach Pizza can both deliver items to you when you require it, but they do take a

certain time to arrive; these times are defined in timed_delivery_table.yml as follows:
0:

 Delivery Failure Text Pointer: $c64cf8

 Delivery Success Text Pointer: $c64bbf

 Event Flag: 0xb4

 Sprite Group: 151

 Timer: 180

 Unknown:

 - 6

 - 0

 - 15

 - 0

 Unknown2:

 - 0

 - 2

 - 0

 - 2

This is the definition for a delivery by Mach Pizza.
Delivery Failure Text Pointer indicates the text to be displayed when the delivery couldn’t

be made (because the area is unreachable), whereas Delivery Success Text Pointer indicates
the text displayed upon a successful delivery of the requested item.
Event Flag is the flag which, once set, schedules the delivery, and is unset once the delivery is

completed.
Sprite Group is the ID of the sprite group of the delivery person.
Timer is the time it takes for an item to be delivered.
Unknown and Unknown2 are (obviously) unknown properties – can you figure them out?

Conclusion
Now that you know how to manage items, it’s time to make sure the user can get them from stores...

keep reading.

Chapter 10.
Stores

There are 65 stores in EarthBound, all defined in one file listing the items available for purchase in it.

List of files used:
• store_table.yml

The syntax for each block explains itself:
1:

 Item 1: 17

 Item 2: 18

 Item 3: 49

 Item 4: 74

 Item 5: 64

 Item 6: 0

 Item 7: 0

You can provide a total of 7 items defined in item_configuration_table.yml. And that’s all
there is to it.

Conclusion
That was easy. Let’s move on to something a tad more involved now: the User Interface.

Chapter 11.
The User Interface

The User Interface is what allows the user to actually control the game, and is an obviously
important component. CoilSnake provides some degree of control over it, mostly over the appearance
of window elements and text labels.

List of files used:
• Fonts/

• Logos/

• WindowGraphics/

• cmd_window_text.yml

• text_misc.yml

• window_configuration_table.yml

I. Windows, Fonts and Logos
EarthBound uses windows to interact with the user; their appearance is defined in the

Windows1_X.png files in WindowGraphics/, where the color palette is provided, along with the
special images (such as “SMAAAASH!!”), the status icons, the HP/PP icons... Additionally, the
Windows2_X.png files provide window borders and corners. The images 0 through 4 are used for the
flavors listed in flavor_names.txt (in order), whereas 5 is used when a character is dead.

Notice: CoilSnake does not actually use anything but Windows1_0.png and Windows2_0.png for
the layout of the windows; the other files are used purely to get the color for the other flavors.

The individual window elements are all put together into actual windows in
window_configuration_table.yml, using the following format:
0:

 Height: 8

 Width: 13

 X Offset: 1

 Y Offset: 1

Height and Width define the height and width of your window (shocking, wouldn’t you say?).
X Offset and Y Offset define the distance the window should be from the left and top border

respectively.
All four numbers represent units of 8 pixels.

Another important element is the font library, which is available under Fonts/; each font is
represented by two files: the first file (with the .png file extension) defines the actual font characters,
whereas the .yml file sets the individual width of each character in the font file. The 0th font is the
standard font, the 1st font is the M. Saturn font, the 2nd font is the flyover font (used at the beginning
of the game), the 3rd font is for HP and PP display and the 4th font is for window titles. Additionally,
the credits font is monospace, and therefore there is no associated .yml file.

Finally, CoilSnake also allows you to edit the logos displayed at the beginning of the game; they are
all available in the Logos/ directory, and can be edited like any other image file in EarthBound.

II. Interface Text
There are two files used to edit the interface text: cmd_window_table.yml (for the main menu

screen brought up with A) and text_misc.yml for a great number of miscellaneous labels.

Conclusion
Modifying the interface might be useful for major changes to EarthBound (for example, a complete

redesign of the menu interface). Looks aren’t everything, though – sound matters too, which is why we’ll
look at music in the next chapter.

Chapter 12.
Music

While CoilSnake does not allow you to actually edit the music in EarthBound (a task better suited to
other tools), it does allow you to select what music will be played and when.

List of files used:
• map_music.yml

Each block in map_music.yml represents a set of background music tracks which can be played
back by EarthBound at certain locations; the IDs for the blocks are used in map_sectors.yml (which
you should edit with EbProjEdit). Let’s look at Map Music 35:
35:

- Event Flag: 0x8216

 Music: 87

- Event Flag: 0x8049

 Music: 93

- Event Flag: 0x8217

 Music: 77

- Event Flag: 0x8047

 Music: 129

- Event Flag: 0x0

 Music: 45

This is a list of possible background tracks; the one which is actually played will depend on the
Event Flags which are currently set. EarthBound checks them in order: if it is set, play the specified
Music (as listed in the Music Editor); otherwise, go to the next one. The last option should always have
Event Flag: 0x0, so that it is always true if all others are false.

Notice: 0x8___ flags are the reverse of 0x___ flags; if one is set, the other is unset.

Conclusion
These musical blocks are useful for re-usability, since several areas might play the same set of songs

depending on the current state of the game.

Chapter 13.
Miscellaneous

But wait, there’s more! There are many tiny, secondary features which add up for interesting effects,
depending on what you want to do with your hack. Those that didn’t fit into any specific category or that
weren’t big enough to warrant a whole chapter are explained here.

List of files used:
• attract_mode_txt.yml

• patches.yml

• telephone_contacts_table.yml

• teleport_destination_table.yml

I. Attract Mode
Attract Mode is the name given to the cutscenes shown if the player doesn’t press any buttons after

starting the game, and are used to attract the player (hence the name). It is controlled through
attract_mode_txt.yml, which lists all the pointers to the cutscenes to play in order; these could be
replaced with CCScript labels, for example, for custom attract mode cutscenes.

II. Patches
Over the years, a series of patches useful for EarthBound development have been developed by

various people; CoilSnake can apply some of these patches automatically, using the patches.yml file.
EB++, for example, which lets you store variables and perform arithmetic on them; switch it to
enabled if you wish to make use of it.

III. Telephone Contacts
Over the course of his adventure, Ness will pick up a series of telephone contacts which he can call;

these contacts are defined in telephone_contacts_table.yml, with a very simple syntax:
3:

 Event Flag: 0xca

 Name: Mach Pizza

 Text Pointer: $c64a1c

This should be extremely familiar to you by now.
Event Flag is the flag which must be set for this contact to appear in the list.
Name is the name of the entry to be displayed.
Text Pointer points to the dialogue which should be initiated when the call is started.

IV. Teleport Destinations
Sometimes, EarthBound needs to teleport characters to another place (for example, when Ness and

Paula are captured in the hotel); these teleportation options are defined in
teleport_destination_table.yml, each operation being described as follows:
4:

 Direction: 3

 Unknown: 127

 Warp Style: 1

 X: 740

 Y: 813

Direction is the direction the player characters should be facing when the teleportation is
complete (you’ll probably only use 1, 3, 5 or 7, which correspond to up, right, down and left
respectively).
Warp Style indicates the way in which the teleportation should take place. There are 52 different

warp styles (many of them used in Moonside), which will be covered in the appendix of a later edition.
X and Y are the coordinates (expressed in units of 8 pixels) to which the character will be warped.
And again, Unknown is a property of unknown meaning.

Notice: if you are familiar with CCScript, you might be interested to know that the teleport
destinations correspond to the “warp” command in CCScript.

Conclusion
And these little tidbits conclude this presentation of CoilSnake. By now, you should have enough

knowledge to make basic hacks on a variety of levels. However, this is just the beginning, as the true
power of hacking derives not from a single tool, but from the conjoined use of many. Later editions of
this manual will cover the other tools you can use for development.

